

Subscriber access provided by ISTANBUL TEKNIK UNIV

Alepposides, Cardenolide **Oligoglycosides from Adonis aleppica**

Guido F. Pauli, Peter Junior, Stefan Berger, and Uwe Matthiesen

J. Nat. Prod., 1993, 56 (1), 67-75• DOI: 10.1021/np50091a010 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50091a010 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

ALEPPOSIDES, CARDENOLIDE OLIGOGLYCOSIDES FROM ADONIS ALEPPICA

GUIDO F. PAULI,* PETER JUNIOR,

Institut für Pharmazeutische Biologie, Geb. 26.23., Universitätstraße 1, Heinrich-Heine-Universität, 4000 Düsseldorf 1, Germany

STEFAN BERGER,

Institut für Organische Chemie, Philipps-Universität, Hans-Meerwein-Strasse, 3550 Marburg, Germany

and UWE MATTHIESEN

Spurenelementelabor der Medizinischen Einrichtungen, Heinrich-Heine-Universität, 4000 Düsseldorf 1, Germany

ABSTRACT.—The structures of novel oligoglycosidic cardenolides, alepposide A $(C_{55}H_{86}O_{23})$ [1] and alepposide B $(C_{48}H_{74}O_{20})$ [2], have been deduced mainly by nmr methods. Based on homonuclear (¹H and ¹³C nmr, ¹H COSY) and proton-detected heteronuclear shift correlation experiments [HMQC both for ¹J(C,H) and for long-range couplings], alepposide A [1] was shown to have the structure strophanthidin-3-0- β -glucopyranosyl-(1 \mapsto 4)-0- β -digitoxopyranosyl-(1 \mapsto 4)-0- β -digitoxopyran

Earlier examination of the annual Adonis aleppica Boiss. (Ranunculaceae), a close relative of the perennial Adonis vernalis, led to the isolation of 3-epi-periplogenine, periplorhamnoside, and strophanthidin-diginoside (1). Upon renewed investigation the isolation of uzarigenin-3-O-sulfate, a 5- α -cardenolide, and aleppotrioloside, an aliphatic alcohol glycoside, was reported (2,3). Early studies showed A. aleppica to contain a cardenolide named a_6 with a pentameric sugar moiety and a bluish-grey color-reaction with vanillin/H₂SO₄(1), a color typically occurring with 19-methylcardenolides. Considering the aldehyde resonance in the ¹H nmr ($\delta_H = 10.0$ ppm), a_6 was believed to be derived from a new 19-aldehyde aglycone (1).

Because they are rarely found in nature, oligoglycosidic cardenolides are of special interest regarding the phytochemistry of cardenolides in general and the chemotaxonomy of the genus Adonis in particular. The present paper deals with the isolation and characterization of two novel cardenolides, named alepposides A [1] and B [2], with long-chained sugar moieties. High field nmr measurements were applied to deduce the complete structure and stereochemistry of these complex oligosaccharides without resorting to derivatization/degradation. Employment of proton-detected heteronuclear correlation spectroscopy [HMQC both for ${}^{1}J(C,H)$ and long-range couplings] with increased sensitivity allowed the acquisition of CH correlations using small samples.

RESULTS AND DISCUSSION

In order not to omit phenolic substances and to avoid degradation of genuine glycosides, the isolation of alepposides A and B from the organic layer [CHCl₃-iPrOH (3:2)] of the MeOH/H₂O extract was carried out without the usual precipitation with Pb⁺⁺-acetate. Therefore, extensive pre-purification by gel filtration (Sephadex LH-20), liquid chromatography (lc) on Amberlite XAD-2, and droplet counter-current chromatography (dccc) was necessary. Further lc separation with Si gel and reversed-phase middle pressure liquid chromatography (rp-mplc) gave pure compounds 1 and 2.

The ¹H-nmr spectrum of **1** shows signals due to five anomeric protons: one doublet (d) at 4.56 ppm and four doublets of doublets (dd) corresponding to 2-desoxy sugars with 1 β configuration. The latter are shown to be 2,6-didesoxy sugars by the presence of four methyl doublets (J = 6.3 Hz) between 1.2 and 1.3 ppm. Two of the 2,6-didesoxy sugars are methyl ethers (OMe absorptions at 3.40 and 3.39 ppm), which gives a marked upfield shift to the anomeric protons (δ_H 4.67 and 4.62 ppm, respectively) compared with the unmethylated sugars (δ_H 4.91 ppm, 2H). The latter anomeric proton signals are partially overlapped with the signals belonging to the AB(X) spin system of H-21 (δ_H 5.02 and δ_H^B 4.90 ppm). This behavior is typical of digitoxose (Dgx) (4). Together with H-22 (δ 5.89 ppm, dd) the presence of a γ -butenolide ring system is confirmed; thus the aglycone of **1** may be assumed to be a cardenolide.

One methyl singlet at δ 0.84 ppm and an aldehyde absorption at δ 10.04 ppm are assigned to H-18 and H-19. The signal of H-17 α appears as a typical multiplet at δ 2.82 ppm. A broad singlet at δ 4.13 ppm indicates an equatorial proton at the C-3 position, which can be associated with a 3 β , 5 β -diOH- or a 3 α , 5 α -diOH-steroid skeleton.

Because of the multiple signals between 3.0 and 4.3 ppm, evidence for the hydroxylation pattern of the aglycone moiety could not be obtained directly from the ¹H-nmr spectra. ¹³C-nmr data were therefore obtained and comparisons made with data of cardenolides isolated in our laboratory, namely convallatoxin. From the 55 carbon signals of 1, 23 could be unambiguously assigned to the skeleton of strophanthidin (Table 1). The 3-0-linkage of the sugar unit, as usually found in cardenolides, was ascertained by glycosidation shift effects of the A-ring carbons (C-3 +8.28 ppm, C-4 - 1.75 ppm, C-2 - 1.63 ppm).

The main information obtained from the dci-NH₃ ms of 1 is given in Table 2. A quasi-molecular ion at m/z 1132 [M + NH₄]⁺ is in agreement with the presence of strophanthidin (m/z 422), four 2,6-didesoxy sugars (mol wt 148 \mapsto 130 in sugar chains), two OMe groups (+m/z 14 each) and one hexose moiety (mol wt 180 \mapsto 162 in sugar chains) deduced from the ¹H-nmr spectra. Dci-NH₃ ms shows a stepwise degradation of both the "intact" glycoside and the oligomeric sugar moiety: Glycoside fragmentation starts with the terminal sugar (Glc in 1 and 2), while oligoglycosides formed by cleavage of the relatively weak sugar-3 β -O-aglycone bonds are degraded from the anomeric ends (Dgx in 1 and 2). From this fragmentation pattern, the sequential arrangement of the monosaccharide units in 1 can be determined: the two Dgx units are attached to the aglycone moiety and to one another, followed by two 2,6-desoxy-3-OMe sugars and a terminally linked hexose. Thus, besides the arrangement of the 3-

	Compound		Сотрои	Compound		
Carbon	1	Proton	1	2	Convallatoxin	
	δ _c		δ _H	δ _c	δ _c	
C-1	25.91 ^b	Η-1α, -1β	2.13 m, 1.31 m ^b	25.94	25.97	
C-2	25.18	Η-2α, -2β	1.60 m, 1.93 m	25.18	25.23	
C-3	76.26	Η-3α	4. 14 br s	76.28	75.32	
C-4	36.77	Η-4α, -4β	1.62 m, 2.18 m	36.82	36.21	
C-5	75.29			75.32	74.89	
С-6	37.11	Η-6α, -6β	1.64 m, 1.48 m	37.22	37.26	
С-7	18.94 ^b	Η-7α, -7β	1.76 m, 2.10 m ^b	18.96	19.08	
С-8	42.56	Η-8β	1.97 m	42.60	42.63	
С-9	40.48	H-la	1.44 m	40.54	40.48	
C-10	56.09			56.12	56.11	
C-11	23.26	H-11α, -11β	1.53 m, 1.20 m	23.25	23.27	
C-12	40.35	Η-12α, -12β	1.52 m, 1.68 m	40.40	40.34	
C-13	50.71			50.74	50.72	
C-14	85.91			85.93	85.92	
C-15	32.42	Η-15α, -15β	1.65 m, 2.16 m	32.46	32.46	
C-16	27.93	H-16 α , -16 β	$2.12 \mathrm{m},-^{\mathrm{c}}$	27.95	27.95	
C-17	51.71	Η-17α	2.82 m	51.77	51.76	
C-18	16.18	H-18	0.84 s	16.16	16.15	
C-19	209.90	H-19	10.04 s	209.93	209.73	
C-20	177.14			177.17	177.19	
C-21	75.21	$H_{A}-21, H_{B}-21$	5.02 dd, 4.90 dd,	75.22	75.20	
			$J_{A,B} = 18.4 \text{ and } J_{21,22} = 1.5$			
C-22	117.92	H-22	5.89 dd	177.97	177.93	
C-23	178.15			178.14	178.14	

TABLE 1. Nmr Data^a for the Aglycone Moieties of Alepposides A [1] and B [2] in Comparison with the ¹³C-nmr Data of the Strophanthidin Portion of Convallatoxin (=Strophanthidin-rhamnoside).

⁴In CD₃OD at 300 K. Chemical shifts are relative to solvent shift: $\delta_H = 3.30$ ppm, $\delta_C = 49.00$ ppm; J given in Hz.

^bOpposite assignment is more consistent with glycosidation effects calculated for several strophanthidin glycosides.

'Could not be assigned.

m/z	Ion	Composition
Cardenolide glycoside 1132	$(M + NH_4)^+$	Str-Dgx-Dgx-Ole-Dgn-Glc
970	$[M + NH_4] - (Glc - H_2O)]^+$	Str-Dgx-Dgx-Ole-Dgn
826	$[M + NH_4 - ((Glc-Dgn) - H_2O)]^+$	Str-Dgx-Dgx-Ole
682	$[M + NH_4 - ((Glc-Dgn-Ole) - H_2O)]^+$	Str-Dgx-Dgx
552	$[M + NH_4 - ((Glc-Dgn-Ole-Dgx) - H_2O)]^+$	Str-Dgx
422	$[M(aglycone) + NH_4]^+$	Str
Sugar moiety (S)		
728	Dgx-Dgx-Ole-Dgn-Glc	$S + NH^{T} - H_2O$
598	Dgx-Ole-Dgn-Glc	$S + NH^{\frac{1}{2}} - Dgx$
468	Ole-Dgn-Glc	$S + NH_4^+ - 2 Dgx$
324	Dgn-Glc	$S + NH_4^+ - 2 Dgx-Ole$

TABLE 2. Dci-NH₃ Ms Data of Alepposide A [1].

OMe sugars, the sequence of the oligoglycosidic portion of 1 could be deduced from the ms data.

The ¹H-nmr (1D and 2D) spectra of alepposide B [2] are remarkably similar to those of **1**. The tetrasaccharide nature of its sugar moiety followed from the occurrence of four glycosidically linked anomeric H resonances, of which two (δ 4.91 ppm, 2H) suggest the presence of two Dgx moieties (as in **1**). One main difference from **1** is the absence of one 2,6-didesoxy-3-OMe sugar, while the four remaining sugars and the aglycone moiety are identical. The structure of a tetrameric sugar portion for **2** is supported by the dci-NH₃ ms data (Table 3): The two Dgx units are attached to the aglycone moiety, followed by one 2,6-desoxy-3-O-Me sugar and a terminally linked hexose.

Corroborative evidence for the molecular structures of the sugar moieties was obtained from an inverse-detected direct (one-bond) heteronuclear correlation experiment (HMQC) of 1. This led to the full CH assignment of the strophanthidin portion (Table 1). Further reliable identification of the sugars as β -digitoxose (Dgx I, Dgx II), β -diginose (Dgn), β -oleandrose (Ole), and β -glucose (Glc) was achieved.

In Table 4 are summarized ¹H- and ¹³C-nmr data of the oligosaccharide portion of alepposide A [1]. With moderate signal overlap in the 3.1-4.2 ppm region, coupling constants could be determined and assignment of ring proton resonances within individual monosaccharide units was available from ¹H, ¹H-COSY and HMQC experiments. Thus, besides the anomeric protons, typical proton signals due to each sugar could be determined from the ¹H-nmr spectra (1D, 2D) of 1 and 2.

	Ion	Composition
Cardenolide glycoside		
988	$[M + NH_4]^+$	Str-Dgx-Dgx-Ole-Glc
826	$[M + NH_4] - (Glc - H_2O)]^+$	Str-Dgx-Dgx-Ole
682	$[M + NH_4 - ((Glc-Ole) - H_2O)]^+$	Str-Dgx-Dgx
552	$[M + NH_4 - ((Glc-Ole-Dgx) - H_2O)]^+$	Str-Dgx
422	$[M(aglycone) + NH_4]^+$	Str
Sugar moiety (S)		
584	Dgx-Dgx-Ole-Glc	$S + NH^{\ddagger} - H_2O$
454	Dgx-Ole-Glc	$ $ S + NH $\frac{1}{4}$ - Dgx
324	Ole-Glc	$S + NH^{\frac{1}{4}} - 2Dgx$

TABLE 3. Dci-NH₃ Ms Data of Alepposide B [2].

	Unit ^b	δ _c	δ _H	<i>J</i> _{н,н}	
Dgx I	1′	98.24	4.90 ₉	$J_{1,2eq} = 1.8, J_{1,2ax} = 8.5$	
	2'	38.71	$1.98(2_{eq})$ $1.68(2_{eq})$	$J_{2eq,3} = 5.5, J_{2eq,2ax} = 13.6$ $J_{2eq,3} = 2.9$	
	3'	68.28	4.22	$J_{3,4} = 2.9$	
	4'	83.51	3.21,	$J_{4.5} = 9.6$	
	5'	69.42	3.80	$J_{5.6} = 6.3$	
	6'	18.46	1.20		
Dgx II	1"	100.52	4.90 ₆	$J_{1,2eq} = 1.8, J_{1,2ax} = 8.5$	
	2"	38.54	$2.03(2_{eq})$	$J_{2eq,3} = 5.5, J_{2eq,2ax} = 13.6$	
			1.72(2 _{ax})	$J_{2ax,3} = 2.9$	
	3"	68.28	4.22 ₈	$J_{3,4} = 2.9$	
	4"	83.51	3.265	$J_{4,5} = 9.6$	
	5″	69.57	3.84	$J_{5,6} = 6.3$	
	6"	18.49	1.21		
Ole	1‴	102.16	4.62	$J_{1,2eq} = 1.8, J_{1,2ax} = 9.6$	
	2‴	37.11	2.33(2 _{eq})	$J_{2eq,3} = 5.2, J_{2eq,2ax} = 12.5$	
			1.46(2 _{ax}	$J_{2ax,3} = 11.4$	
	3‴	80.27	3.35 ₈	$J_{3,4} = 9.2$	
	4‴	84.07	3.16	$J_{4,5} = 9.2$	
	5‴	72.29	3.35 ₀	$J_{5,6} = 6.3$	
	6‴	18.80	1.28		
_	OMe‴	57.21	3.40 ₂		
Dgn	1‴	102.34	4.67	$J_{1,2eq} = 2.2, J_{1,2ax} = 9.9$	
	2 ^{***}	33.59	$2.00(2_{eq})$	$J_{2eq,3} = 4.4, J_{2eq,2ax} = 11.8$	
	- ***		$1.75(2_{ax})$	$J_{2ax,3} = 12.5$	
	3""	80.69	3.44	$J_{3,4} = 2.6$	
	4 ^m	/4.08	3.99	$J_{4,5} = 1.3$	
) ^{····}	/1.91	3.50	$J_{5,6} = 6.3$	
	$6^{\prime\prime\prime\prime} \cdot $	17.69	1.30		
~	OMe ^{""}	56.60	3.395		
Glc	$1^{\prime\prime\prime\prime\prime}$	104.30	4.56	$J_{1,2} = /./$	
	2^{mn}	/3.93	3.21 ₇	$J_{2,3} = 9.2$	
	5	/8.13	3.37 ₈	$J_{3,4} = 9.2$	
	4	/1.80	2.208	$J_{4,5} = 9.0$	
	ر	(1.89	2.23	$J_{5,6a} = 2.2, J_{5,6b} = 3.3$	
	0	02.99	2.80(0g)	J64,6b - 11.0	
			2.02(0b)		

 TABLE 4.
 Nmr Data^a for the Oligosaccharide Moiety of Alepposide A [1].

^aIn CD₃OD at 300 K. Chemical shifts are relative to solvent shift: $\delta_H = 3.30$ ppm, $\delta_C = 49.00$ ppm. ^bDgx = digitoxose, Dgn = diginose, Glc = glucose, Ole = oleandrose; mutual coupling constants are given only once, at their first occurrence in the table.

Glucose (Glc) was identified by the coupling pattern of its all axial protons and H-6 $\{\delta_H 3.86 \text{ and } 3.65 \text{ ppm}, \text{ respectively}, AB(M) \text{ spin system}\}$. H-2 characteristically appears at highest field as a non-overlapped double of doublets ($\delta_H 3.22 \text{ ppm}$).

The mostly deshielded proton of digitoxose (Dgx) is H-3eq (ddd, only small J's) forming an AMXY spin system together with the H-4ax and H-2 methylene protons. The H-5 signal (dq) shows a large coupling (J = 9.6) to H-4, indicating that the latter is axial. Compound 1 gives two sets of parallel proton signals due to the two Dgx moieties, which in case of H-3 and H-5 are distinguishable.

Diginose (Dgn) exhibits three typical non-overlapped absorptions. The signal of H-4 appears at lowest field showing only small J's. A coupling constant of 1.3 Hz extracted from the H-5 signal (dq) demonstrates the equatorial orientation of H-4, while H-3 must be axial since $J_{2eq,3} = 12.5$ Hz.

Oleandrose (Ole) could be shown to be present in 1 and 2, while diginose was absent in 2. Thus according to the ms fragmentation pattern the monosaccharides of alepposide B are arranged as -Dgx-Dgx-Ole-Glc. In oleandrose the C-2 methylene protons form part of a nuclei first-order spin system (AMXY) resonating at extremely different shift values ($\Delta \delta = 1.17$ ppm) with H-2eq unusually deshielded at 2.33 ppm. The detection of H-3/H-5 Ole protons is hindered by extensive signal overlap in the 3.1–3.5 ppm region. However, information about the sequential arrangement of the monosaccharide units in 1 came from the shift value of Ole H-4: If the terminal disaccharide of 1 is -Ole-Glc, H-4 representing the geminal proton of the obligatory position of glycosidation should have equal shift values in 1 and 2. However, H-4 is shifted more upfield in 1 which should be caused by a weaker glycosidation effect of a 2,6-didesoxy sugar (Dgn) compared with that of (terminal) glucose in 2. Analogous observations can be made comparing the shift values of the anomeric glucose protons ($\Delta \delta = 0.122$ ppm). Thus, the terminal trisaccharide in 1 is suggested to be -Ole-Dgn-Glc.

Definitive evidence for the composition of 1 was obtained from an inverse-detected long-range heteronuclear correlation experiment (long-range variation of the HMQC experiment). Long-range couplings between anomeric and H-4 "sugar protons" could be detected in both directions (H-1 \mapsto H-4 and H-4 \mapsto H-1) proving the sequential arrangement of the monosaccharide units in 1 to be -Dgx-Dgx-Ole-Dgn-Glc and confirming their all (1 \mapsto 4) glycosidic linkage. A particularly meaningful section of this map is given in Figure 1. Interestingly F 1 cross-sections (¹H \mapsto ¹³C) in some cases allow the identification of sugar ring carbons proving multiple long-range coupling behavior

FIGURE 1. Section of the long-range HMQC spectrum of alepposide A [1], providing proof of the sequential arrangement of the sugar units.

within the sugar units. For example, Ole and Dgn ring carbons can be detected from the corresponding Ole-H-2eq and Dgn-H-4 cross-sections. Moreover the structure of 2 could be confirmed by ¹³C-nmr measurements (Tables 1 and 5) which gave further evidence for the identity of the sugar units as well as for the strophanthidin portion.

From the structural information, alepposide A [1] has the structure strophanthidin-3-0- β -glucopyranosyl-(1 \mapsto 4)-0- β -diginopyranosyl-(1 \mapsto 4)-0- β -oleandropyranosyl-(1 \mapsto 4)-0- β -digitoxopyranosyl-(1 \mapsto 4)-0- β -digitoxopyranoside, while alepposide B [2] is strophanthidin-3-0- β -glucopyranosyl-(1 \mapsto 4)-0- β -oleandropyranosyl-(1 \mapsto 4)-0- β -digitoxopyranosyl-(1 \mapsto 4)-0- β -di

For 1 and 2 "sugar protons" the spin systems are non-first-order. Additionally, multiple long-range couplings ($J \le 1.0$ Hz), resulting in slight signal broadening, make difficult the direct determination of coupling constants. Therefore spectral simu-

	Unit ^b	δ _H	Јн,н	δ _C
Str	3α	4. 14 br s		
	17α	2.82 m		
	18 CH ₃	0.84 s		
	19 CHO	10. 04 s		
	21 _A	5.01 dd	$J_{A,B} = 18.4, J_{21,22} = 1.5$	
	21 _B	4.90 dd		
	22	5.89 dd		
Dgx I	1′	4.90	$J_{1,2m} = 1.5, J_{1,2m} = 8.8$	98.28
_	2'	$1.96(2_{m})$	$J_{2m,3} = 5.5, J_{2m,2m} = 13.6$	38.75
		1.71(2,)	$J_{2ax,3} = 2.6$	
	3'	4.23	$J_{3,4} = 2.6$	68.30
	4'	3.25	$J_{4,5} = 9.6$	83.56
	5′	3.80	$J_{5.6} = 6.3$	69.46
	6′	1.22		18.45
Dgx II	1″	4.90	$J_{1,2eg} = 1.5, J_{1,2ax} = 8.8$	100.52
	2"	$2.01(2_{eq})$	$J_{2eq,3} = 5.5, J_{2eq,2ax} = 13.6$	38.72
		1.72 (2 _{ax})	$J_{2ax,3} = 2.6$	
	3"	4.23	$J_{3.4} = 2.6$	68.30
	4"	3.23	$J_{4,5} = 9.6$	83.56
	5″	3.84	$J_{5,6} = 6.3$	69.61
	6"	1.20		18.48
Ole	1‴	4.65	$J_{1,2eq} = 1.8, J_{1,2ex} = 9.6$	102.11
	2‴	2.33 (2 _{eq})	$J_{2eq,3} = 5.2, J_{2eq,2ax} = 12.5$	37.53
		$1.49(2_{ax})$	$J_{2ax,3} = 11.4$	
	3‴	3.41	$J_{3,4} = 9.2$	80.15
	4‴	3.28	$J_{4,5} = 9.2$	83.50
	5‴	3.41	$J_{5,6} = 6.3$	72.78
	6‴	1.36		18.77
	OMe‴	3.46		58.20
Glc	1"""	4.44	$J_{1,2} = 7.7$	104.13
	2 ^{,,,,}	3.16	$J_{2,3} = 9.2$	75.60
	3''''''''''''''''''''''''''''''''''''''	3.33	$J_{3,4} = 9.2$	78.27
	4''''''	3.22	$J_{4,5} = 9.6$	71.82
	5	3.24	$J_{5,6a} = 1.8, J_{5,6b} = 5.9$	78.11
	6	3.85 (6 <u>,</u>)	$J_{6a,6b} = 11.8$	63.06
		3.62(6 _b)		

TABLE 5. Nmr Data^a for Alepposide B [2].

^aIn CD₃OD at 300 K. Chemical shifts are relative to solvent shift: $\delta_H = 3.30 \text{ ppm}$; J given in Hz. ^bStr = strophanthidin, Dgx = digitoxose, Glc = glucose, Ole = oleandrose; mutual coupling constants are given only once, at their first occurrence in the table. lations have been carried out by the use of LAOCOON III. The results were in good agreement with the measured spectra. Coupling constants given are based on both the measured spectra and spectral simulations.

Because of their solubility, and following the relevant literature (4,6), the nmr spectra of **1** and **2** were initially recorded in CDCl₃ (400 MHz). Comparative studies in different solvents (pyridine- d_5 , CDCl₃, CD₃OD) have shown enormous solvent effects especially concerning "sugar protons." Solutions in CD₃OD gave the best results with regard to reduction of signal overlap, resolution of small coupling constants, and stability of cardenolide solutions. However, only higher field nmr measurements (500 MHz) yield separated signals of H-21, Dgx anomeric protons, and HDO when CD₃OD is used.

To our knowledge, this is the first report of tetra- and pentaglycosidic C-19-aldehyde cardenolides. From a chemotaxonomical point of view, the findings of oligoglycosidic strophanthidin derivatives is an important tool for classification of the genus Adonis. The cardenolides isolated from A. vernalis as well as from other Adonis spp. are mostly derived from periplogenin, strophanthidin, 16-OH-strophanthidin, and adonitoxigenin, usually having mono- or disaccharide moieties. While cardenolides containing complex sugar chains are unknown in other Adonis spp. as summarized by Junginger (5), 1 and 2 appear in A. aleppica in considerable amounts. Additionally, cardenolide sulfates like uzarigenin-3-0-sulfate representing the major cardenolide of A. aleppica (2) have not been detected in the perennial A. vernalis and Adonis amurensis in the course of detailed studies (5). On the other hand, strophanthidin and its glycosides have been found in all the extracts of Adonis spp. studied, in annual as well as in perennial ones. Up to now, A. aleppica, due to the unusual way of conjugation/derivatization of the cardenolide aglycones (sulfatation and oligoglycosylation), seems to have an exceptional position within the genus Adonis. Further studies on the cardenolide complex of annual Adonis plants are necessary to determine whether or not other species show similar metabolic behavior.

Finally, alepposide A could be shown to be identical with compound a_6 isolated before from the same plant (1) by comparison of the ¹H- and ¹³C-nmr data. However, a_6 was reported to give a bluish color reaction with vanillin/H₂SO₄, whereas the aglycone strophanthidin and its mono- and diglycosides produce green spots (5). Compounds **1** and **2** also did not give the typical green but gave a greenish-blue color. Although the mechanism of the vanillin/H₂SO₄ reaction is unknown, the sugar moieties of cardenolides could make contributions to the resulting color, especially in the case of extensive sugar chains. We have succeeded in the isolation of oligosaccharides which contain those 2,6-didesoxy, and/or 3-O-Me sugars typically found in cardenolides. These substances reveal bluish-grey colors after vanillin/H₂SO₄ detection, and their identification will be subject of future publication. With these findings, the "untypical" blue vanillin/H₂SO₄ reaction of alepposides should be interpreted as due to both the aglycone and the sugar moiety. Thus compound a_6 (=alepposide A) is not inevitably derived from a new 19-aldehyde cardenolide (1) but is actually a strophanthidin glycoside.

EXPERIMENTAL

INSTRUMENTATION.—Nmr spectra were recorded at 300° K on a Bruker AMX 500 spectrometer using solutions in CD₃OD (99.8% D). The solvent shifts were used as internal standard (CD₃OD: δ_H 3.30 ppm, δ_C 49.00 ppm). COSY spectra were recorded in the absolute value mode using a spectral window of 3000 Hz, 1K complex data points in t_2 and 128 t_1 increments. Prior to Fourier transformation, the time domain data matrices were multiplied with sine window functions in both dimensions. The inverse-detected heteronuclear shift correlation (HMQC) experiment was performed with a 13,000 × 3000 Hz spectral window, acquiring 1K complex data points in t_2 and 128 t_1 increments. Prior to Fourier transformation this was multiplied with a sine window function in both dimensions and extended to yield a $1K \times 1K$ frequency domain real matrix. Inverse-detected long-range heteronuclear shift correlation was carried out with the HMQC method using a delay of 50 msec between the first two pulses of the sequence, a $13,000 \times 3000$ Hz spectral window, and 1K complex data points in t_2 and 128 t_1 increments. The time domain data matrix was multiplied with sine (F2) and qsine (F1) window functions and extended to yield a $1K \times 1K$ frequency domain real matrix. Dci mass spectra were run on a Finnigan INCOS 50 System with NH₃ as reactant gas (emitter heating rate 10 m A·sec⁻¹, calibration with FC43). Optical rotations were measured with a Perkin-Elmer 241 polarimeter; uv spectra were taken with a Beckmann DB-G instrument and ir with a Perkin-Elmer 297 photometer. Mplc preparations were carried out on a self-built glass column (20 cm \times 16 mm i.d.) with a Knauer hplc pump (Model 64) and a DuPont detector at 217 nm.

COLLECTION OF PLANT MATERIAL.—Authentic plant material of A. *aleppica* was collected in April 1990 near Urfa (Turkey) and identified by the authors (GFP/PJ). Voucher specimens are deposited at the Heinrich-Heine-Universität, Düsseldorf, Germany.

EXTRACTION. —Whole plants (700 g, air-dried) were successively extracted with petroleum ether (bp 60–80°), MeOH, and MeOH/H₂O (50%) with an Ultra-Turrax apparatus. The combined MeOH and MeOH/H₂O extracts (115 g) were evaporated in vacuo to give a brown gummy residue, re-dissolved in H₂O, and exhaustively extracted with CHCl₃-iPrOH (3:2). The organic layers were combined, the solvent removed in vacuo, and the residue (26 g) re-dissolved in H₂O and extracted with CH₂Cl₂-petroleum ether (3:7). The material in the H₂O layer (22.6 g) was filtered over XAD-2 by stepwise elution with H₂O, MeOH, and Me₂CO. The MeOH eluates (4.3 g) were chromatographed on a Büchi 670 dcc chromatograph using CHCl₃-MeOH-H₂O (5:6:4) in descending mode. Fractions were monitored by tlc, and similar fractions were combined. One fraction (2.8 g) was further purified by lc on Sephadex LH 20 (118 g, MeOH) yielding a mixture of less polar cardenolides (2.1 g), which was submitted to lc on Si gel (100 g, 40–63 µm, tlc monitoring) with a discontinuous gradient of CHCl₃-MeOH-H₂O (100:0:0-75:24:1) to give crude fractions containing alepposides A and B. Convallatoxin (Table 1) was isolated from the same plant and identified by nmr measurements and comparison of the spectral data and physical properties with those of authentic convallatoxin (Fa. Merck, Germany).

ISOLATION OF ALEPPOSIDE A [1].—Upon evaporation, fractions 274–285 (10 ml each) gave an amorphous material (111 mg), from which 1 was isolated by mplc on RP-18 Si gel (24 g LiChroprep, 25–40 μ m), eluting with a continuous MeOH/H₂O gradient (30 to 57% MeOH in 120 min, flow rate 5 ml·min⁻¹). The fractionation was monitored by uv detection and tlc and afforded 1 (25 mg) as an amorphous solid, showing R_f 0.70 on Si gel tlc using CHCl₃-MeOH-H₂O (80:19:1); [α]²⁰D +5.3° [c = 0.936, MeOH]; uv λ max (MeOH) nm (log ϵ) 216 (4.13); ir ν max (KBr) cm⁻¹ 3440 (OH ν), 2930 (Me ν), 1760 and 1740 (butenolide), 1715 (C=O ν), 1620 (butenolide), 1460 (Me δ_{as}); dci-NH₃ ms see Table 2; ¹H and ¹³C nmr see Tables 1 and 4.

ISOLATION OF ALEPPOSIDE B [2].—Evaporation of fractions 286–320 (10 ml each) gave an amorphous material (164 mg) which was submitted to mplc on RP-18 Si gel as above, affording 45 mg of an amorphous solid. Further purification was achieved by preparative tlc (Si gel F_{254} , 20 × 20 cm) using EtOAc-MeOH-H₂O (77:15:8). Compound 2 was obtained as an amorphous solid (8.5 mg), showing R_f 0.54 on Si gel tlc using CHCl₃-MeOH-H₂O (80:19:1): $[\alpha]^{20}D + 7.7^{\circ}$ [c = 0.850, MeOH]; uv λ max (MeOH) nm (log ϵ) 217 (4.16); ir ν max (KBr) cm⁻¹ 3420 (OH ν), 2920 (Me ν), 1750 and 1740 (butenolide), 1705 (C=O ν), 1620 (butenolide); dci-NH₃ ms: see Table 3; ¹H and ¹³C nmr see Tables 1 and 5.

LITERATURE CITED

- 1. P. Junior, D. Krüger, and C. Winkler, Dtsch. Apoth. Ztg., 125, 1945 (1985).
- 2. G.F. Pauli and P. Junior, Dtsch. Apoth. Ztg., 130, 2170 (1990).
- 3. G.F. Pauli, U. Matthiesen, and P. Junior, Phytochemistry, 57, 2172 (1992).
- 4. D. Krüger, "Untersuchungen des Glykosidspektrums von Digitalis lanata mit Hilfe neuerer chromatographscher Methoden." Ph.D. thesis, Philipps-Universität, Marburg, Germany, 1984.
- M. Junginger, "Cardenolidglykoside und weitere glykosidische Verbindungen von Adonis vernalis," Ph.D. thesis, Philipps-Universität, Marburg, Germany, 1990, and references cited therein.
- 6. T. Drakenberg, P. Brodelius, D.D. McIntyre, and H.J. Vogel, Can. J. Chem., 68, 272 (1990).

Received 8 June 1992